Mechanical ventilation worsens abdominal edema and inflammation in porcine endotoxemia
نویسندگان
چکیده
INTRODUCTION We hypothesized that mechanical ventilation per se increases abdominal edema and inflammation in sepsis and tested this in experimental endotoxemia. METHODS Thirty anesthetized piglets were allocated to one of five groups: healthy control pigs breathing spontaneously with continuous positive pressure of 5 cm H2O or mechanically ventilated with positive end-expiratory pressure of 5 cm H2O, and endotoxemic piglets during mechanical ventilation for 2.5 hours and then continued on mechanical ventilation with positive end-expiratory pressure of either 5 or 15 cm H2O or switched to spontaneous breathing with continuous positive pressure of 5 cm H2O for another 2.5 hours. Abdominal edema formation was estimated by isotope technique, and inflammatory markers were measured in liver, intestine, lung, and plasma. RESULTS Healthy controls: 5 hours of spontaneous breathing did not increase abdominal fluid, whereas mechanical ventilation did (Normalized Index increased from 1.0 to 1.6; 1 to 3.3 (median and range, P<0.05)). Endotoxemic animals: Normalized Index increased almost sixfold after 5 hours of mechanical ventilation (5.9; 4.9 to 6.9; P<0.05) with twofold increase from 2.5 to 5 hours whether positive end-expiratory pressure was 5 or 15, but only by 40% with spontaneous breathing (P<0.05 versus positive end-expiratory pressure of 5 or 15 cm H2O). Tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in intestine and liver were 2 to 3 times higher with mechanical ventilation than during spontaneous breathing (P<0.05) but similar in plasma and lung. Abdominal edema formation and TNF-α in intestine correlated inversely with abdominal perfusion pressure. CONCLUSIONS Mechanical ventilation with positive end-expiratory pressure increases abdominal edema and inflammation in intestine and liver in experimental endotoxemia by increasing systemic capillary leakage and impeding abdominal lymph drainage.
منابع مشابه
Levosimendan affects oxidative and inflammatory pathways in the diaphragm of ventilated endotoxemic mice
INTRODUCTION Controlled mechanical ventilation and endotoxemia are associated with diaphragm muscle atrophy and dysfunction. Oxidative stress and activation of inflammatory pathways are involved in the pathogenesis of diaphragmatic dysfunction. Levosimendan, a cardiac inotrope, has been reported to possess anti-oxidative and anti-inflammatory properties. The aim of the present study was to inve...
متن کاملMild endotoxemia during mechanical ventilation produces spatially heterogeneous pulmonary neutrophilic inflammation in sheep.
BACKGROUND There is limited information on the regional inflammatory effects of mechanical ventilation and endotoxemia on the production of acute lung injury. Measurement of F-fluorodeoxyglucose (F-FDG) uptake with positron emission tomography allows for the regional, in vivo and noninvasive, assessment of neutrophilic inflammation. The authors tested whether mild endotoxemia combined with larg...
متن کاملMechanical ventilation affects lung function and cytokine production in an experimental model of endotoxemia.
BACKGROUND Mechanical ventilation using tidal volumes around 10 ml/kg and zero positive end-expiratory pressure is still commonly used in anesthesia. This strategy has been shown to aggravate lung injury and inflammation in preinjured lungs but not in healthy lungs. In this study, the authors investigated whether this strategy would result in lung injury during transient endotoxemia in the lung...
متن کاملEffects of pressure support and pressure-controlled ventilation on lung damage in a model of mild extrapulmonary acute lung injury with intra-abdominal hypertension
Intra-abdominal hypertension (IAH) may co-occur with the acute respiratory distress syndrome (ARDS), with significant impact on morbidity and mortality. Lung-protective controlled mechanical ventilation with low tidal volume and positive end-expiratory pressure (PEEP) has been recommended in ARDS. However, mechanical ventilation with spontaneous breathing activity may be beneficial to lung func...
متن کاملEvaluating the effects of protective ventilation on organ-specific cytokine production in porcine experimental postoperative sepsis
BACKGROUND Protective ventilation with lower tidal volume (VT) and higher positive end-expiratory pressure (PEEP) reduces the negative additive effects of mechanical ventilation during systemic inflammatory response syndrome. We hypothesised that protective ventilation during surgery would affect the organ-specific immune response in an experimental animal model of endotoxin-induced sepsis-like...
متن کامل